Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress.

Identifieur interne : 000C77 ( Main/Exploration ); précédent : 000C76; suivant : 000C78

Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress.

Auteurs : Molly M. Gallogly [États-Unis] ; John J. Mieyal

Source :

RBID : pubmed:17662654

Descripteurs français

English descriptors

Abstract

Reversible protein S-glutathionylation (protein-SSG) is an important post-translational modification, providing protection of protein cysteines from irreversible oxidation and serving to transduce redox signals. Analogous to phosphatases, glutaredoxin (GRx) enzymes catalyze deglutathionylation of proteins, regulating diverse intracellular signaling pathways. Recently, other enzymes have been reported to exhibit deglutathionylating activity, but their contribution to intracellular protein deglutathionylation is uncertain. Currently, no enzyme has been shown to serve as a catalyst of S-glutathionylation in situ, although potential prototypes are reported, including human GRx1 and the pi isoform of glutathione-S-transferase (GSTpi). Further insight into cellular mechanisms of protein glutathionylation and deglutathionylation will enrich our understanding of redox signal transduction and potentially identify new therapeutic targets for diseases in which oxidative stress perturbs normal redox signaling. Accordingly, this review focuses primarily on mechanisms of catalysis in mammalian systems.

DOI: 10.1016/j.coph.2007.06.003
PubMed: 17662654


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress.</title>
<author>
<name sortKey="Gallogly, Molly M" sort="Gallogly, Molly M" uniqKey="Gallogly M" first="Molly M" last="Gallogly">Molly M. Gallogly</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, and the Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106-4965, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, and the Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106-4965</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17662654</idno>
<idno type="pmid">17662654</idno>
<idno type="doi">10.1016/j.coph.2007.06.003</idno>
<idno type="wicri:Area/Main/Corpus">000C53</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C53</idno>
<idno type="wicri:Area/Main/Curation">000C53</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C53</idno>
<idno type="wicri:Area/Main/Exploration">000C53</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress.</title>
<author>
<name sortKey="Gallogly, Molly M" sort="Gallogly, Molly M" uniqKey="Gallogly M" first="Molly M" last="Gallogly">Molly M. Gallogly</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, and the Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106-4965, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, and the Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106-4965</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
</analytic>
<series>
<title level="j">Current opinion in pharmacology</title>
<idno type="ISSN">1471-4892</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Catalysis (MeSH)</term>
<term>Cysteine (chemistry)</term>
<term>Cysteine (metabolism)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Glutathione (chemistry)</term>
<term>Glutathione (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sulfhydryl Compounds (chemistry)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Catalyse (MeSH)</term>
<term>Cystéine (composition chimique)</term>
<term>Cystéine (métabolisme)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Glutathion (composition chimique)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Thiols (composition chimique)</term>
<term>Thiols (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Glutathione</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine</term>
<term>Glutathione</term>
<term>Oxidoreductases</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cystéine</term>
<term>Glutathion</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cystéine</term>
<term>Glutathion</term>
<term>Oxidoreductases</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Catalysis</term>
<term>Glutaredoxins</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Protein Processing, Post-Translational</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Catalyse</term>
<term>Glutarédoxines</term>
<term>Humains</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Oxydoréduction</term>
<term>Stress oxydatif</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Reversible protein S-glutathionylation (protein-SSG) is an important post-translational modification, providing protection of protein cysteines from irreversible oxidation and serving to transduce redox signals. Analogous to phosphatases, glutaredoxin (GRx) enzymes catalyze deglutathionylation of proteins, regulating diverse intracellular signaling pathways. Recently, other enzymes have been reported to exhibit deglutathionylating activity, but their contribution to intracellular protein deglutathionylation is uncertain. Currently, no enzyme has been shown to serve as a catalyst of S-glutathionylation in situ, although potential prototypes are reported, including human GRx1 and the pi isoform of glutathione-S-transferase (GSTpi). Further insight into cellular mechanisms of protein glutathionylation and deglutathionylation will enrich our understanding of redox signal transduction and potentially identify new therapeutic targets for diseases in which oxidative stress perturbs normal redox signaling. Accordingly, this review focuses primarily on mechanisms of catalysis in mammalian systems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17662654</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>11</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1471-4892</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2007</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Current opinion in pharmacology</Title>
<ISOAbbreviation>Curr Opin Pharmacol</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress.</ArticleTitle>
<Pagination>
<MedlinePgn>381-91</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Reversible protein S-glutathionylation (protein-SSG) is an important post-translational modification, providing protection of protein cysteines from irreversible oxidation and serving to transduce redox signals. Analogous to phosphatases, glutaredoxin (GRx) enzymes catalyze deglutathionylation of proteins, regulating diverse intracellular signaling pathways. Recently, other enzymes have been reported to exhibit deglutathionylating activity, but their contribution to intracellular protein deglutathionylation is uncertain. Currently, no enzyme has been shown to serve as a catalyst of S-glutathionylation in situ, although potential prototypes are reported, including human GRx1 and the pi isoform of glutathione-S-transferase (GSTpi). Further insight into cellular mechanisms of protein glutathionylation and deglutathionylation will enrich our understanding of redox signal transduction and potentially identify new therapeutic targets for diseases in which oxidative stress perturbs normal redox signaling. Accordingly, this review focuses primarily on mechanisms of catalysis in mammalian systems.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gallogly</LastName>
<ForeName>Molly M</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, and the Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, OH 44106-4965, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mieyal</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1F30AG029687</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AG 15885</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG 024413</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008803</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM07250</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>07</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Curr Opin Pharmacol</MedlineTA>
<NlmUniqueID>100966133</NlmUniqueID>
<ISSNLinking>1471-4892</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516005">GLRX protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>106</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>04</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2007</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>06</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
<ArticleId IdType="pii">S1471-4892(07)00103-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.coph.2007.06.003</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</noCountry>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Gallogly, Molly M" sort="Gallogly, Molly M" uniqKey="Gallogly M" first="Molly M" last="Gallogly">Molly M. Gallogly</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17662654
   |texte=   Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17662654" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020